
GAMUT User Guide
Updated June 18, 2004

Current GAMUT Version 1.0.1

1 Introduction

GAMUT is a suite of game generators designed for testing game-theoretic algorithms. With GAMUT,
instances of games from thirty-five base game classes can be easily generated. Using different
parameterization options, it is possible to randomize over countless distributions of games, resulting
in a comprehensive test bed for any algorithm requiring a normal-form game as input.

This guide is intended to help you get started using GAMUT. Section 2 describes how to install
and run GAMUT. Section 3 describes the GAMUT command line and how to use GAMUT parameter
options. Section 4 lists all of the available game generator, function, and graph classes in the
GAMUT package, along with more detailed descriptions of the parameter options which can be used
to tailor the games generated using these classes. Section 5 introduces the built-in game taxonomy
and explains how to use this tool to generate from multiple classes of games which share common
properties. Finally, section 6 describes the various formats in which games can currently be output,
including the normalization and integer payoff options.

This guide does not detail how to develop your own GAMUT classes. If you are interested in
creating additional games, functions, graphs, or output classes for GAMUT, or in modifying the
classes that currently exist, refer to the GAMUT Developer’s Guide, available on our website at
http://gamut.stanford.edu.

2 Running GAMUT

No installation is required to run GAMUT. All that is needed is the file gamut.jar. The jar file can
be run on the command line using the line

java -jar gamut.jar1

When this command is typed as given, the GAMUT help screen will be displayed, but no games
will be generated. In order to generate a game, certain parameters must be specified. This section
is meant to give an overview of how to use GAMUT parameters on the command line, while details
of the particular parameter options available are discussed in more depth in sections 3 and 4.

Some game classes do not require many parameters for generation. One such example is the
simple generator for Battle Of the Sexes. An instance of Battle of the Sexes with default payoff
values can be generated by adding the -g option to the basic GAMUT command line.

java -jar gamut.jar -g BattleOfTheSexes

Suppose that you would like to generate Battle of the Sexes with payoffs normalized to fall in
the range between 0 and 150, and that you would like to store the output in a file called BoS.game.
These options can be set using global parameters. Global parameters are specified on the command
line in the same manner as the generator class.

1A few of the generators may require more memory than is allowed by JVM by default. In such cases it is possible
to increase maximum heap size by using java -Xmx flag.

1

java -jar gamut.jar -g BattleOfTheSexes -normalize -min payoff 0 -max payoff 150
-f BoS.game

Other games require more parameters. In order to generate a random game, for example, the
number of players and the number of actions for each player must be specified. These parameters
may appear on the command line either before, after, or interspersed with the global parameters.

java -jar gamut.jar -g RandomGame -players 4 -normalize -min payoff 0 -max payoff
150 -f BoS.game -actions 2 4 5 7

Finally, some games require the use of function, graph, or subgame classes. Each of these classes
must be parameterized as well. When the parameters for a function, graph, or subgame class are
specified, they must be enclosed in square brackets. The following command shows how to specify
parameters for a random Local-Effect Game using a complete graph and a polynomial function.

java -jar gamut.jar -g RandomLEG -players 3 -graph CompleteGraph -graph params
[-nodes 3 -reflex ok 0] -func PolyFunction -func params [-degree 2 -coefs 2 1 3]

3 GAMUT Command Line Options

The GAMUT command line is based on a hierarchy of parameters, each controlling various aspects
of the game being generated. Global parameters include the class of games to be used and output
options such as settings for normalization. Each class of games then has its own parameters
which can be specified. In some cases, subgames, graphs, and functions will be used and must be
parameterized as well.

3.1 Global Parameters

The following parameter options are available for all games.

• -g: specify which game class or classes to use. If the name specified corresponds to a collection
of classes, then a random generator contained in that collection will be chosen. It a list (space
separated) of such names is used then the generator will be chosen from an intersection of
these collections.

• -random params: set this flag if parameters which are not directly set by the user should be
randomized. See Section 3.3.

• -random seed: allows user to set a random seed. Defaults to current time. Useful for
regenerating the same instance of a “random” game multiple times.

• -f: file name for game output.

• -output: specify the output class to use. Defaults to SimpleOutput. See Section 6.3.

• -normalize: set this flag if payoffs should be normalized within a range. See section 6.1.

• -min payoff: minimum payoff when normalization is used.

2

• -max payoff: maximum payoff when normalization is used.

• -int payoffs: set this flag if payoffs should be converted to integers rather than output as
doubles. See section 6.2.

• -int mult: multiplier used before rounding when converting from double to integer payoffs.
Defaults to 10,000.

• -helpgame: print help info for a given game (or class of games)

• -helpgraph: print help info for given graph class.

• -helpfunc: print help info for a given function class.

3.2 Game-Specific Parameters

Each game class in GAMUT has its own set of parameters. Two of the most common game-specific
parameters, players and actions are described here. For complete description of the parameters
available for use in each game class, see Section 4.

• -players: specify the number of players.

• -actions: specify the number of actions for each player. May always be entered as one
number which will then be the number of actions for each player. In some (non-symmetric)
games it is also acceptable to enter the number of actions as a list of action numbers for each
player. The version of actions used by each individual game class is specified in section 4.1.

3.3 Randomized Parameters

Although some parameters must be set by hand, many parameters can be randomized by setting the
-random params flag. When this flag is set, these randomizable parameters may be excluded from
the command line and will automatically be set to a random value within some given range. Param-
eter values that are set by hand take precedence, and don’t get randomized even if -random params
flag is set.

Often the function, graph, and subgame classes used by a game can be randomized as well.
When this is done, the parameters required by these classes will be randomized automatically.

3.3.1 Randomizing Games

It is possible to select a random game from the default distribution if -g is ommitted, while
-random params is present. If this is the case, a generator will be randomly drawn from the set of
generators that accept both -players and -actions parameters, corresponding to the intersection
of GamesWithActionParam and GamesWithPlayerParam classes (see section 5). This feature should
be used sparingly, since this default randomization does not include many generators that don’t
fall into these categories, such as various 2-player or 2-action games or geometric games.

3

3.4 Default Parameter Settings

Some parameters have default values. These parameters may be excluded from the command line
even when the random params flag is not set. When the random params flag is set, these parameters
will be randomized, not assigned their default values.

4 Available GAMUT Classes

4.1 Games

There are currently thirty-five distinct classes of games available in GAMUT. These classes represent
games commonly referred to in relevant literature, and are described below.

• ArmsRace:

Create an instance of an Arms Race game. Payoffs in this game are symmetric and calculated
by using the formula −C(x) + B(x − y) where x is the level of arms the player in question
has chosen, y is the level of arms his opponent has chosen, and C and B are user-specified
functions.

Please note that in order for the game to meet the definition of an Arms Race common in
economics literature it must be the case that B is smooth and concave and C is at least
smooth. Choose your functions accordingly.

Game Parameters:

– actions: symmetric version (see section 3.2)

– c func: the name of the function class to use for the cost function C. The function
supplied should be SMOOTH in order to stick to the strict definition of an Arms Race.

– c params: parameters to be handed off to the cost function C, must be enclosed in [].

– b func: the name of the function class to use for the B function. The function supplied
should be SMOOTH AND CONCAVE in order to stick to the strict definition of an
Arms Race.

– b params: parameters to be handed off to the B function, must be enclosed in [].

– low act: lower bound on the players’ action range. Must be > 0 and ≤ 1000.

• BattleOfTheSexes:

Creates a 2x2 Battle of the Sexes Game

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

• BertrandOligopoly:

Creates an instance of a Bertrand Oligopoly using arbitrary cost and demand functions.

In the Bertrand Oligopoly, each player offering the object at the lowest price p will receive a
payoff of

4

p ∗ (D(p)/m)− C(D(p)/m)

where D is the demand function, C is the cost function, and m is the number of players who
offered the object at this price.

Please note that the demand function should be non-negative and decreasing.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– cost func: the name of the function class to use for the cost function.

– cost params: parameters to be handed off to the cost function, must be enclosed in [].

– demand func: the name of the function class to use for the demand function.

– demand params: parameters to be handed off to the demand function, must be enclosed
in [].

• BidirectionalLEG:

Creates a Bidirectional Local-Effect Game using the specified graph class and specified func-
tion class.

A Bidirectional Local-Effect Game is a LEG with a graphical structure in which every edge
from b to a has the same local-effect function as the edge from a to b.

Please note that you should be careful when you choose the graph class and set the graph
parameters here. The graph chosen should be symmetric (i.e. whenever there is an edge from
a to b there is also an edge from b to a) and should not have reflexive edges. (Each node will
have a local effect on itself, but this is handled outside of the graph.) Set the parameters for
the graph accordingly!

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– graph: the name of the graph class to use

– graph params: parameters to be handed off to the graph, must be enclosed in [].

– func: the name of the function class to use

– func params: parameters to be handed off to the function, must be enclosed in [].

• Chicken:

Creates a 2x2 Chicken Game

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

5

• CollaborationGame:

Creates a collaboration game.

By our definition, both coordination and collaboration games are common payoff yet not
always symmetric. The highest payoffs are for all outcomes in which every player chooses
the same action. In the collaboration game (unlike in the general coordiation game) these
outcomes will all yield the same payoff.

By default, payoffs will be in the range [-100, 100] with all coordinated payoffs set to 100 for
each player. To change this range, use the normalization or integer payoff options.

Game Parameters:

– players

• CongestionGame:

Creates a congestion game.

In the congestion game, each player chooses a subset from the set of all facilities. Each player
then receives a payoff which is the sum of payoff functions for each facility in the chosen
subset. Each payoff function depends only on the number of other players who have chosen
the facility.

Functions used with this generator should always be decreasing in order for the resulting
game to meet the criteria for being considered a congestion game.

Game Parameters:

– players

– facilities: number of facilities in set. Since each player chooses a subset of the
facilities, the number of actions available to each player is 2 to the number of facilities.
A maximum of five facilities is allowed because of this extremely fast growth in matrix
size.

– func: the name of the function class to use for the payoff functions. Should either be a
class which always creates decreasing functions, or a class which can be parameterized
to create decreasing functions.

– func params: parameters to be handed off to the function, must be enclosed in []. If the
function class in use does not always create decreasing functions, the parameters should
be set so that the function is decreasing.

– sym funcs: should be true if it is desired that all players have the same set of payoff
functions.

• CoordinationGame:

Creates a Coordination Game.

By our definition, coordination games are common payoff yet not always symmetric. The
highest payoffs are for all outcomes in which every player chooses the same action, although
it is not always the case that all of these outcomes yield the same payoffs. (See collaboration
games.)

6

By default, payoffs will be in the range [-100, 100] with coordinated payoffs positive and
uncoordinated payoffs negative. To change this range, use the normalization or integer payoff
options.

Game Parameters:

– players

• CournotDuopoly:

Create an instance of the Cournot Duopoly using arbitrary cost and inverse demand functions.

In order for the problem to make sense, the cost functions used should be increasing. If C1

and C2 are cost functions and P is the inverse demand function then if player 1 plays y1 and
player 2 plays y2, the payoff to player 1 will be P (y1 + y2)y1−C1(y1) and the payoff to player
2 will be P (y1 + y2)y2 − C2(y2)

Although this formulation could be extended to more than two players, this is generally not
done in practice so we limit the players to 2.

Game Parameters:

– actions: symmetric version (see section 3.2)

– cost func1: the name of the function class to use for the cost function for the first
player.

– cost params1: parameters to be handed off to the cost function for player 1, must be
enclosed in [].

– cost func2: the name of the function class to use for the cost function for the second
player.

– cost params2: parameters to be handed off to the cost function for player 2, must be
enclosed in [].

– p func: the name of the function class to use for the inverse demand function P .

– p params: parameters to be handed off to the inverse demand function, must be enclosed
in [].

• CovariantGame:

Creates a game with the given number of players with payoffs distributed normally(0,1) with
covariance r.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– players

– actions: non-symmetric version (see section 3.2)

– r: covariance of any two player’s payoffs in the same action profile. Must be between
-1/(players-1) and 1.

7

• DispersionGame:

Returns a strong dispersion game which is both action and player symmetric as well as
common payoff. An entropy calculation is used in order to determine when one outcome is
more dispersed than another, although this could easily be replaced by standard deviation or
a similar test.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

• GrabTheDollar:

Creates an instance of game Grab the Dollar.

In this game, there is a prize (or ”dollar”) that both players are free to grab at any time,
where actions represent the chosen times. If both players grab for it at the same time, they
will rip the price and both will receive the low payoff. If one chooses a time earlier than the
other (i.e. chooses a strictly lower action number number) then he will receive the price (and
thus the high payoff) and the opposing player will receive a payoff somewhere between the
high and the low.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– actions: symmetric version (see section 3.2) actions in this game. Must be ≥ 1 and
≤ 500, but please note that using large numbers of actions will result in exponentially
large games. Large numbers should not be used in games with more than two players.

• GreedyGame: Creates a 2 player Greedy Game.

In this game, each action represents a chosen subset. Player 2 can choose any subset of
set size elements while Player 1 can only choose subsets up to size max r.

If the intersection of the ”sets” chosen by the players is empty then the payoff to Player 2
will be the number of elements in the set he has chosen while the payoff to Player 1 will be
the negation of this. Otherwise both players will receive 0.

To change the range of the payoff values, you may use normalization or integer based payoffs.

Note that the number of actions available to each player is (
(|S|
maxnumber

)
+

(|S|
maxnumber−1

)
+

...+
(|S|

1

)
) where maxnumber is the maximum number of items in the set that the player can

choose.

Game Parameters:

– set size: number of elements in set S from which the players choose elements. Must
be > 0 and ≤ 8 for the sake of keeping the number of actions reasonable.

8

– max r: maximum number of elements which player one (the ”red” player) can choose
from S. Must be > 0 and ≤ set size.

• GuessTwoThirdsAve:

Creates an instance of the game in which all players guess a number trying to come as close
as possible to two thirds of the average of the numbers guessed by all players.

By default, the payoffs for this game are in the range from 0 to 100.0, where the player whose
guess comes closest to two thirds of the average receives 100.0 and the others receive 0. If
more there is a tie, the payoff amount is split. To change the range of payoffs you can use
the normalization or integer payoff options.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

• HawkAndDove:

Creates a 2x2 Hawk and Dove.

Uses the more narrow definition of Hawk and Dove which does not, for example, allow games
which would be classified as Prisoners Dilemmas or Chicken Games to qualify as Hawk and
Dove.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

• LocationGame:

Creates an instance of the two person Location Game based on Hotelling’s original model.

In this game there is a street of length l. Player one has a shop set up distance a from one
end of the street and player 2 has a shop set up distance b from the other end. Customers are
uniformly distributed along the street and the cost of getting a good from a shop to a home
on the street is c times the distance. The players must pick a price at which to sell their
goods in order to maximize their profit assuming that production is free and customers will
always choose the shop for which the combined good price and transportation cost is smaller.

Profits may be scaled if normalization is used, but relations between the parameters will
remain the same and are thus important.

Be very careful randomizing parameters in this game. If the cost of transporting goods is too
high, it will always be a dominant strategy for both players to choose their highest action
and the game will lose some of its intended interesting properties.

Game Parameters:

– actions: symmetric version (see section 3.2)

– a: distance between the location of player 1’s store and his end of the street. Must fall
between 0 and 1000.

9

– b: distance between the location of player 2’s store and his end of the street. Must fall
between 0 and 1000.

– l: length of the entire street. Must be ≥ a + b but ≤ 1000.

– c: cost per unit of transporting the goods. Must fall between 1 and 100. See the above
note on randomization and values of this parameter.

– price low: lowest price each player can choose. Must be > 0 and ≤ 1000. The highest
price each player can choose will then be price low + actions - 1.

• MajorityVoting:

Creates an instance of the Majority Voting Game.

In this version of the Majority Voting Game, players’ utilities for each candidate (i.e. action)
being declared the winner are arbitrary and it is possible that a player would be indifferent
between two or more candidates.

If multiple candidates have the same number of votes and this number is higher than the
number of votes any other candidate has, then the candidate with the lowest number is
declared winner.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

• MatchingPennies:

Creates an instance of the Matching Pennies Game

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

• MinimumEffortGame:

Creates an instance of the Minimum Effort Game.

In this game, the payoff for a player is determined by a formula a + bM − cE where E is the
player’s effort and M is the minimum effort of any player.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– a: constant a used in formula a + bM − cE. Should be between -100 and 100.

– b: coefficient b used in formula a + bM − cE. Should be between 0 and 100.

– c: coefficient used in formula a + bM − cE. Should be between 0 and 100 but must be
< b.

10

• NPlayerChicken:

Creates an instance of the N-Player Chicken Game.

In N-Player Chicken, just as in the typical two player version of the game, players may
cooperate or defect. There is a cost for choosing to cooperate. However, if a certain number
of players choose to cooperate, then all players receive a reward.

The cost and reward amounts are always chosen between 1 and 100 (with reward > cost). To
change this range, use normalization.

Game Parameters:

– players

– cutoff: the number of players who need to cooperate to get the reward. Must be > 0
and ≤ players.

• NPlayerPrisonersDilemma:

Creates an instance of the N-Player Prisoner’s Dilemma Game. In the N-Player Prisoner’s
Dilemma, the payoff to each player is based on the number of players who cooperate not
including the player himself.

If the number of other players who cooperate is i, then we say that C(i) is the payoff for
cooperating and D(i) is the payoff for defecting.In order for this payoff scheme to result in a
Prisoner’s Dilemma, it must be the case that:

1) D(i) > C(i) for 0 ≤ i ≤ n− 1

2) D(i + 1) > D(i) and also C(i + 1) > C(i) for 0 ≤ i < n− 1

3) C(i) > (D(i) + C(i− 1))/2 for 0 < i ≤ n− 1

We guarantee these conditions are met by using linear functions for which you may provide
the parameters:

C(i) = Xc + Y

D(i) = Xc + Z

where 0 < Z − Y < X.

Game Parameters:

– players

– function X: X in payoff functions (see above). Must be set such that 0 < Z − Y < X
and all parameters must be less than 100,000.

– function Y: Y in payoff functions (see above). Must be set such that 0 < Z − Y < X
and all parameters must be less than 100,000.

– function Z: Z in payoff functions (see above). Must be set such that 0 < Z − Y < X
and all parameters must be less than 100,000.

• PolymatrixGame:

Creates a polymatrix game using the given graph and the given subgame type to form two
player edge games.

11

If randomization is desired, graph must belong to the GraphWithNodesParam class, and sub-
game must support 2 players and belong to the GameWithActionParam class.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– graph: the name of the graph structure class to use

– graph params: parameters to be handed off to the graph, must be enclosed in [].

– subgame: the name of the game class to use as a subgame. There will be an error if the
subgame does not have two players or if the number of actions for either of the players
is different than that supplied by the actions parameter.

– subgame params: parameters to be handed off to the subgame, must be enclosed in
[]. If the players or actions parameters are generally required by this subgame, they
may be left out. These will be reset to appropriate values automatically. All other
parameters may be generated randomly and will then be regenerated for each instance
of the subgame.

• PrisonersDilemma:

Creates a 2x2 Prisoner’s Dilemma

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

• RandomGame: Creates a game with the given number of players with payoffs distributed uni-
formly at random.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– players

– actions: non-symmetric version (see section 3.2)

• RandomCompoundGame:

Creates a Compound Game from a randomly generated symmetric 2x2 matrix.

A Compound Game is a game in which the payoff for each player is calculated as if he were
playing the same two by two game with each of the other players and summing the payoffs.

The values in the 2x2 game matrix are always chosen at random from values between -100
and 100. To change this range, use the normalization or integer payoff options.

Game Parameters:

– players

12

• RandomLEG:

Creates a Local-Effect Game using the specified graph class and specified function class.

Please note that you should be careful when you choose the graph class and set the graph
parameters here. The graph chosen should be symmetric (i.e. whenever there is an edge
from a to b there is also an edge from b to a) and should not have reflexive edges. Set the
parameters for the graph accordingly!

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– graph: the name of the graph class to use

– graph params: parameters to be handed off to the graph, must be enclosed in [].

– func: the name of the function class to use

– func params: parameters to be handed off to the function, must be enclosed in [].

• RandomGraphicalGame:

Creates a version of any random graphical game. Parameters for the given graph class must
be set. If randomization is desired, graph must belong to the class GraphWithNodeParam.
Note also that the number of nodes in the graph as implied by graph parameters must match
the number of players.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– graph: the name of the graph structure class to use

– graph params: parameters to be handed off to the graph, must be enclosed in [].

• RandomZeroSum:

Creates a 2 player Zero Sum Game

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Note that when normalization is used, there may be error in the last digits of the decimal
payoffs resulting in a games which are occasionally not quite zero sum.

Game Parameters:

– actions: non-symmetric version (see section 3.2)

• RockPaperScissors:

Creates an instance of the Rock, Paper, Scissors Game.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters: No parameters.

13

• ShapleysGame:

Creates an instance of Shapley’s Game

By default, all payoffs will fall in the range [0, 100]. This range can be altered by setting the
normalization options or by using integer payoffs.

Game Parameters: No parameters.

• SimpleInspectionGame:

Creates a 2 player Simple Inspection Game

This game is very similar to the Greedy Game. Each action represents a chosen subset from
a set of total size set size. Player 1 can choose any subset of up to max r elements while
Player 1 can only choose subsets up to size max b.

If the intersection of the ”sets” chosen by the players is empty then the payoff to Player 2
will be 100.0 while the payoff to Player 1 will be -100.0 Otherwise both players will receive 0.

To change the range of the payoff values, you may use normalization or integer based payoffs.

Note that the number of actions available to each player is (
(|S|
maxnumber

)
+

(|S|
maxnumber−1

)
+

... +
(|S|

1

)
) where maxnumber is the maximum number of items in the set that the player can

choose.

Game Parameters:

– set size: number of elements in set S from which the players choose elements. Must
be > 0 but ≤ 8 in order o keep the number of actions reasonable.

– max r: maximum number of elements which player one (the ”red” player) can choose
from S. Must be > 0 and ≤ set size.

– max b: maximum number of elements which player two (the ”blue” player) can choose
from S. Must be > 0 and ≤ set size.

• TravelersDilemma:

Creates an instance of Traveler’s Dilemma game.

In order to make the game interesting, the parameters should be set up so that the reward
is larger than one (but usually smaller than the number of actions). When this holds, the
unique Nash equilibrium will be the unsatisfying equilibrium in which everyone chooses the
smallest dollar amount.

When randomization is used, the reward will automatically be chosen from somewhere in this
range.

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– reward: the amount of the reward for the player who claims the lowest dollar amount.
Must be > 0 and ≤ 100.

14

• TwoByTwoGame:

Creates a game of two actions and two players of a given type according to Rappoport’s
classification.

By default, all payoffs will fall in the range [-100, 100]. This range can be altered by setting
the normalization options or using integer payoffs.

Game Parameters:

– type: type of the 2x2 game in Rappoport’s classification, in [1,85]

• UniformLEG:

Creates a Uniform Local-Effect Game using the specified graph class and specified function
class.

A Uniform Local-Effect Game is a LEG with a graphical structure in which every edge from
b to a has the same local-effect function as the edge from c to a. (This notation is slightly
different from what is used in the local-effect literature, but is equivalent.)

Please note that you should be careful when you choose the graph class and set the graph
parameters here. The graph chosen should be symmetric (i.e. whenever there is an edge from
a to b there is also an edge from b to a) and should not have reflexive edges. (Each node will
have a local effect on itself, but this is handled outside of the graph.) Set the parameters for
the graph accordingly!

Game Parameters:

– players

– actions: symmetric version (see section 3.2)

– graph: the name of the graph class to use

– graph params: parameters to be handed off to the graph, must be enclosed in [].

– func: the name of the function class to use

– func params: parameters to be handed off to the function, must be enclosed in [].

• WarOfAttrition:

Creates an instance of the War of Attrition. In a War of Attrition, two players are in a dispute
over an object, and each chooses a time to concede the object to the other player. If both
concede at the same time, they share the object. Each player has a valuation of the object,
and each player’s utility is decremented at every time step.

Payoffs are based on the ranges of valuations and decrements provided. Although normaliza-
tion may have the effect that the ranges of the payoffs will change, the ratio of the valuation
amount to the decrement amount will still come into play.

Game Parameters:

– actions: symmetric version (see section 3.2)

– valuation low: lower bound on the players’ valuations for the item, should be between
10 and 1000.

15

– valuation high: upper bound on the players’ valuations for the item. Must be ≥
valuation low.

– decrement low: lower bound on the amount that the worth of the object to a player
is decremented by at each time step. Note that each player has a different decrement
value. Should be ≤ valuation low, and between 1 and 100.

– decrement high: upper bound on the amount that the worth of the object to a player
is decremented by at each time step. Must be ≥ decrement low.

4.2 Functions

Game generation often involves the use of functions. The common functions currently built into
GAMUT are described below.

• ConcaveTableFunction:

Represents a general concave function as a table of points. Function is evaluated by looking
up nearest point to the x value. No interpolation is done.

Function Parameters:

– min: minimum of the function

– max: maximum of the function

– points: number of points in the table lookup

• DecreasingWrapper:

Takes an increasing base function, and makes it descreasing by negating and shifting up.

Function Parameters:

– base func: name of the function to wrap, must be increasing.

– min: the minimum of the function

– base params: parameters to be handed off to the base function, must be enclosed in [].

• ExpFunction:

A function of the form f(x) = eα∗x + β

Function Parameters:

– alpha: multiplicative constant. Should be in the range 0 to 1. Defaults to 1.

– beta: additive term. Defaults to 0.

• IncreasingPoly:

Represents an increasing polynomial. Coefficients and degree can either be specified ex-
plicitely, or randomized to lie within given ranges.

Function Parameters:

– degree: degree of the polynomial function.

16

– coefs: coefficients of polynomial (should be a list of d+1 numbers where d is the degree),
in the increasing order of degree.

– coef min: lower bound on polynomial coefficients, used only for randomizing. Can be
anywhere from -1000 to 1000 but defaults to -10.

– coef max: upper bound on polynomial coefficients, used only for randomizing. Can be
anywhere from -1000 to 1000 but defaults to 10.

• IncreasingTableFunction:

Represents a general increasing function as a table of points. Function is evaluated by looking
up nearest point to the x value. No interpolation is done.

Function Parameters:

– min: minimum of the function
– max: maximum of the function
– points: number of points in the table lookup

• LogFunction:

A function of the form f(x) = α ∗ ln (x + k) + β. k is calculated automatically as 1− dMin,
where dMin is the lower bound on the domain.

Function Parameters:

– alpha: multiplicative constant
– beta: additive term

• PolyFunction:

Represents a general polynomial. Coefficients and degree can either be specified explicitely,
or randomized to lie within given ranges.

Function Parameters:

– degree: degree of the polynomial function.
– coefs: coefficients of polynomial (should be a list of d+1 numbers where d is the degree),

in the increasing order of degree.
– coef min: lower bound on polynomial coefficients, used only for randomizing. Can be

anywhere from -1000 to 1000 but defaults to -10.
– coef max: upper bound on polynomial coefficients, used only for randomizing. Can be

anywhere from -1000 to 1000 but defaults to 10.

• TableFunction:

Represents a general function as a table of points. Function is evaluated by looking up nearest
point to the x value. No interpolation is done.

Function Parameters:

– min: minimum of the function
– max: maximum of the function
– points: number of points in the table lookup

17

4.3 Graphs

Game generation can require the use of graphs. Graphical games, local-effect games, and polymatrix
games are each generated around the structure of a graph. Some common classes of graphs built
into GAMUT are described below.

• BAGraph:

Generates a power-law out-degree graph using Barabasi-Albert model. Resulting power-law
exponent is around -3.

Graph Parameters:

– m0: Number of nodes to start with. Defaults to 5.

– m: Number of edges to add to each new node ≤ m0.

– t: The total number of time steps.

• CompleteGraph:

Generates a complete graph with a specified number of nodes.

Graph Parameters:

– nodes: Number of nodes in the graph. Must be > 0 and ≤ 100. When randomized, no
more than 20 nodes will be added to the graph. For some games, the number should be
even less and should be set by hand.

– reflex ok: Set this to true if reflexive edges are allowed.

• NAryTree:

Generates an n-ary tree with a given branching factor and a given depth.

Graph Parameters:

– n: Number of children of every non-leaf node in the tree.

– depth: Depth of the tree. Please note that it is advisable to use a very small value for
at least one of n and depth parameters to avoid creating graphs too large for the games.

• NDimensionalGrid:

Generates an n-dimensional grid with a given number of points in each dimension. Each node
is connected to its neighbors.

Graph Parameters:

– num dimensions: Dimensions of the graph. Must be > 0. May be set up to 10, but
when randomized will be no greater than 4 since graphs of higher dimensions will be too
large for most games.

– dim size: Size of a single dimension in the graph. Must be > 0. Can be set up to 20,
but when randomized will be no greater than 4.

18

• NDimensionalWrappedGrid:

Generates an n-dimensional grid on a sphere with a given number of points in each dimension.
Each node is connected to its neighbors.

Graph Parameters:

– num dimensions: Dimensions of the graph. Must be > 0. May be set up to 10, but
when randomized will be no greater than 4 since graphs of higher dimensions will be too
large for most games.

– dim size: Size of a single dimension in the graph. Must be > 0. Can be set up to 20,
but when randomized will be no greater than 4.

• PLODGraph:

Generates a power-law out-degree graph via PLOD algorithm of Palmer and Stefan.

Graph Parameters:

– nodes: Number of nodes to generate. Must be ≥ 2 and ≤ 100. Because some games
require graphs without too many nodes, no more than 20 nodes will be used when
this parameter is randomized. Sometimes it will be necessary to set the parameter to
something even smaller by hand.

– edges: The total number of directed/or undirected edges.

– alpha: Alpha parameter (power) in the power law, defaults to 2.1.

– beta: Beta parameter (multiplier) in the power law, defaults to 5.

– sym edges: Set this to true if it should be the case that whenever there is an edge from
node a to node b, there is also an edge from node b to node a.

• RandomGraph:

Generates a (uniformly) random graph according to G(n, m) model.

Graph Parameters:

– nodes: Number of nodes in the random graph. May be set very large by hand, but when
randomized will not be set to anything over 20 since very large graphs do not work well
in some games. Occasionally this parameter must be set to something even smaller by
hand.

– edges: If sym edges is not set, the total number of directed edges in the random graph.
If sym edges is set, the number of pairs of directed edges.

– sym edges: Set this to true if it should be the case that whenever there is an edge from
node a to node b, there is also an edge from node b to node a.

– reflex ok: Set this to true if reflexive edges are allowed.

• RingGraph:

Generates a ring-of-ring graphs. Consists of a central ring of nodes, each of which participates
in a separate outer ring of nodes.

Graph Parameters:

19

– inner nodes: Number of nodes in the inner circle of the ring graph. May be set up to
50 by hand, but when randomized will be set to something no larger than 6 since many
games cannot handle large graphs.

– outer nodes: Number of nodes in each of the outer circles of the ring graph. May be
set up to 50 by hand, but when randomized will be set to something no larger than 6
since many games cannot handle large graphs.

• RoadGraph:

Generates a road graph: consists of a two sets of n nodes each connected in a line, with
additional n edges connecting corresponding nodes in two sets.

Graph Parameters:

– nodes: Number of nodes in the road graph. Must be > 0 and ≤ 100. When randomized
this parameter will not be set to anything larger than 20 since large graphs do not work
well with some games. Occasionally this parameter will need to be set to something
even smaller by hand.

• SmallWorldGraph:

Generates a small-world graph according to the Watts-Strogatz model. Starts with a ring
lattice of degree 2k, and then randomly rewires each edge with some probability.

Graph Parameters:

– nodes: Number of nodes in the graph. Must be > 0 and ≤ 100. When randomized, this
parameter will not be set to anything over 20 since many games cannot handle large
graphs.

– K: Each node will have 2K neighbours in the original ring lattice. Defaults to 2 or can
be randomized.

– p: Probability of rewiring each edge

• StarGraph:

Generates a star graph, a single center node connected to all other nodes.

Graph Parameters:

– nodes: Total number of nodes in the graph. Must be > 0 and ≤ 100. When randomized,
this parameter will not be set to anything greater than 20 since many games cannot
handle large graphs.

5 The Taxonomy

The taxonomy feature allows generation from classes of games, functions, and graphs that cannot
be generated explicitly, but that encompass multiple subclasses that can be explicitly generated.
When a class of games is selected using the taxonomy feature, a generator is chosen uniformly at
random from the set of all generators which are subclasses of this class, and this randomly chosen
generator is invoked to create a game.

20

5.1 Taxonomy Implementation

The taxonomies with known classes of games, graphs, functions, and outputters are stored in four
text files names games.txt, graphs.txt, games.txt, outputters.txt, respectively. The default
files are stored in the gamut.jar under edu/stanford/multiagent/gamer/ directory.

5.1.1 Overriding File Location

If GAMUT is run from a jar file, it will by default try to load taxonomy files stored within the jar
file. It is possible to specify an alternative external location for them by setting gamer.class.path
java property2. If the property is not set, and GAMUT is not run from jar, it will try to locate the
files in the current directory as a last resort.

5.1.2 Taxonomy File Format

Taxonomy files consist of class name followed by the equal sign = followed by class definition. Empty
lines and lines starting with # are ignored. Class definition may take one of three forms:

• =Empty Line: This indicates a basic ground generator which can be instantiated and
invoked to generate a game, graph, function, or an outputter.

• = [ClassName -param value -param value . . .]: This is also a ground class, with partially
specified parameters. Here ClassName must be a basic generator name. When instantiating
such a class, some parameters will be preset. This is useful in order to split up ground
generators into finer subclasses.

• = Class1, Class2, Class3, . . .: This specifies a collection of classes. To instantiate such a
class, GAMUT will pick a subclass from the list at random, and recursively repeat this until it
gets to a ground generator that can be executed.

5.2 Game Classes

The following classes of games are formed by randomizing over appropriate subclasses.

• GameWithActionParam: The class of games that are action-extensible. This class can be used,
for example, as the subclass for polymatrix games.

Component classes: GameWithActionParam= MajorityVoting, TravelersDilemma, LocationGame,
PolymatrixGame, RandomZeroSum, BertrandOligopoly, DispersionGame, RandomGraphi-
calGame, CournotDuopoly, BidirectionalLEG, RandomLEG, GuessTwoThirdsAve, Uniform-
LEG, CovariantGame, GrabTheDollar, WarOfAttrition, RandomGame, MinimumEffortGame

• GameWithPlayerParam: The class of games that are player-extensible in a nice way.

Component classes: BertrandOligopoly, BidirectionalLEG, CollaborationGame, CongestionGame,
CoordinationGame, CovariantGame, DispersionGame, GuessTwoThirdsAve, MajorityVot-
ing, MinimumEffortGame, NPlayerChicken, NPlayerPrisonersDilemma, PolymatrixGame, Ran-
domGame, RandomCompoundGame, RandomLEG, RandomGraphicalGame, TravelersDilemma,
UniformLEG

2This can be done using java -Dgamer.class.path=dirname flag

21

• Game2PlayerOrParam: Similar to above but for two player or two action games.

Component classes: GameWithPlayerParam, BattleOfTheSexes, Chicken, CournotDuopoly,
GrabTheDollar, HawkAndDove, LocationGame, MatchingPennies, PrisonersDilemma, Ran-
domZeroSum, RockPaperScissors, TwoByTwoGame, WarOfAttrition

• Game2ActionOrParam

Component classes: GameWithActionParam, BattleOfTheSexes, CollaborationGame, Coor-
dinationGame, HawkAndDove, MatchingPennies, NPlayerChicken, NPlayerPrisonersDilemma,
PrisonersDilemma, RandomCompoundGame, TwoByTwoGame

• OriginalPaperNPlayerDist

Component classes: DispersionGame, MinimumEffortGame, RandomGame, TravelersDilemma,
BertrandOligopoly, PolymatrixGame-SW, PolymatrixGame-RG, PolymatrixGame-Road, PolymatrixGame-
CG, UniformLEG-RG, UniformLEG-CG, UniformLEG-SG, BidirectionalLEG-RG, BidirectionalLEG-
CG, BidirectionalLEG-SG, GraphicalGame-RG, GraphicalGame-SG, GraphicalGame-Road,
GraphicalGame-SW, CovariantGame-Pos, CovariantGame-Zero, CovariantGame-Rand

• OritinalPaper2PlayerDist

Component classes: OriginalPaperNPlayerDist, LocationGame, WarOfAttrition, CovariantGame-
Neg

• SymmetricTwoByTwo

Component classes: BattleOfTheSexes, Chicken, HawkAndDove, PrisonersDilemma

• ClassicalMatrixgame

Component classes: BattleOfTheSexes, MatchingPennies, PrisonersDilemma, HawkAndDove,
Chicken, RockPaperScissors, CollaborationGame, CoordinationGame

• CompactlyRepresentable

Component classes: BidirectionalLEG, PolymatrixGame, UniformLEG, RandomLEG, Coor-
dinationGame, GraphicalGame-Road

• CompleteOpposition

Component classes: RockPaperScissors, MatchingPennies, SimpleInspectionGame, GreedyGame,
RandomZeroSum, GeometricGame

• CompoundGame

Component classes: NPlayerChicken, NPlayerPrisonersDilemma, RandomCompoundGame

• CongestionGameClass

Component classes: BidirectionalLEG, UniformLEG, DispersionGame, CongestionGame

• CoordinationGameClass

Component classes: MinimumEffortGame, CollaborationGame, BattleOfTheSexes

22

• DominanceSolvableEq

Component classes: TravelersDilemma, PrisonersDilemma, NPlayerPrisonersDilemma, Su-
permodularGames

• DominantStrategies

Component classes: PrisonersDilemma, TravelersDilemma, NPlayerPrisonersDilemma

• ESSGames

Component classes: SymmetricTwoByTwo

• GeometricGame

Component classes: MatchingPennies, GreedyGame, SimpleInspectionGame

• NoDominantStrategies

Component classes: MatchingPennies, BattleOfTheSexes, DispersionGame, RockPaperScis-
sors

• NoPSNE

Component classes: MatchingPennies, SimpleInspectionGame, RockPaperScissors

• PotentialGameClass

Component classes: CongestionGameClass

• PSNEGameClass

Component classes: CoordinationGameClass, PotentialGameClass, DominanceSolvableEq,
BertrandOligopoly, Chicken, ArmsRace, CournotDuopoly

• StrictEqGameClass

Component classes: NPlayerPrisonersDilemma, HawkAndDove, PrisonersDilemma, Super-
modularGames, LocationGame, MatchingPennies

• SupermodularGames

Component classes: CournotDuopoly, BertrandOligopoly, ArmsRace

• StronglySymmetricGames

Component classes: ESSGames, UniformLEG, BidirectionalLEG, Chicken, SymmetricTwoByTwo,
CompoundGame, ArmsRace, BattleOfTheSexes, NPlayerPrisonersDilemma, MatchingPen-
nies, NPlayerChicken, PrisonersDilemma, RandomLEG

• WeaklySymmetricGames

Component classes: StronglySymmetricGames

• UniqueNEGames

Component classes: DominanceSolvableEq, GuessTwoThirdsAve

23

The next set of classes are formed by creating instances of other classes with particular param-
eter settings.

• PolymatrixGame-SW:

[PolymatrixGame -graph SmallWorldGraph -subgame RandomGame]

• PolymatrixGame-RG:

[PolymatrixGame -graph RandomGraph -subgame RandomGame -graph params [-sym edges]
]

• PolymatrixGame-Road:

[PolymatrixGame -graph RoadGraph -subgame RandomGame]

• PolymatrixGame-CG:

[PolymatrixGame -graph CompleteGraph -subgame RandomGame]

• UniformLEG-RG:

[UniformLEG -graph RandomGraph -graph params [-reflex ok 0 -sym edges]]

• UniformLEG-CG:

[UniformLEG -graph CompleteGraph -graph params [-reflex ok 0 -sym edges]]

• UniformLEG-SG:

[UniformLEG -graph StarGraph -graph params [-reflex ok 0 -sym edges]]

• BidirectionalLEG-RG:

[BidirectionalLEG -graph RandomGraph -graph params [-reflex ok 0 -sym edges]]

• BidirectionalLEG-CG:

[BidirectionalLEG -graph CompleteGraph -graph params [-reflex ok 0 -sym edges]]

• BidirectionalLEG-SG:

[BidirectionalLEG -graph StarGraph -graph params [-reflex ok 0 -sym edges]]

• GraphicalGame-RG:

[RandomGraphicalGame -graph RandomGraph -graph params [-reflex ok 0 -sym edges]]

• GraphicalGame-SG:

[RandomGraphicalGame -graph StarGraph -graph params [-reflex ok 0 -sym edges]]

• GraphicalGame-Road:

[RandomGraphicalGame -graph RoadGraph -graph params [-reflex ok 0 -sym edges]]

• GraphicalGame-SW:

[RandomGraphicalGame -graph SmallWorldGraph -graph params [-reflex ok 0 -sym edges]
]

24

• CovariantGame-Neg:

[CovariantGame -r -0.9]

• CovariantGame-Pos:

[CovariantGame -r 0.9]

• CovariantGame-Zero:

[CovariantGame -r 0]

5.3 Graph Classes

There is currently one graph class available which is created by randomizing over existing graph
classes.

• GraphWithNodeParam: graph classes which accept the node parameter. These can be used
with graphical games and LEGs.

Component classes: CompleteGraph, RandomGraph, RoadGraph, StarGraph, SmallWorld-
Graph

5.4 Function Classes

The following classes are created by randomizing over function classes.

• SlowlyIncreasingFunction

Component classes: LogFunction, IncreasingPoly

• ConcaveFunction

Component classes: LogFunction, ConcaveTableFunction

• IncreasingFunction

Component classes: ExpFunction, LogFunction, IncreasingPoly, IncreasingTableFunction

• DecreasingFunction

Component classes: DecreasingWrapper

6 Output

Currently there are no additional output classes available as part of the taxonomy.

6.1 Normalization

Payoffs can be normalized to fall within a given range by setting the -normalize flag. When
this flag is set, the additional parameters -min payoff and -max payoff must also be set. These
parameters specify the values of the lowest and highest payoffs in the game. They parameters do
not have default values and cannot be randomized.

25

Note that payoffs are not normalized for each individual player, but are normalized over all
players. Thus the min payoff will be the lowest payoff to any player over all outcomes and similarly
the max payoff will be the highest payoff to any player over all outcomes. All other payoffs will
be scaled proportionally to fall within this range.

6.2 Integer Versus Double Payoff Values

By default, payoffs for most games will be output as double values. Payoffs can be converted
to integer output values by setting the -int payoffs flag. Integer payoff values are calculated
by multiplying each payoff by some large constant set using the -int mult parameter and then
rounding.

Note that normalization is applied before payoffs are converted to integer values. This implies,
for example, that if payoffs are normalized to fall in the range between, say, -100 and 100, and
integer payoffs are requested with an int mult of 1000, then payoffs will actually fall on integer
values in the range between -100,000 an 100,000.

6.3 Available Output Classes

The following output formats are currently available in GAMUT.

• SimpleOutput: (default)

The default output format lists all payoffs for a given output on one line. For example, in a
two-player game, the line

[2 3] : [799169 148480]

would signify that when player 1 plays his second action and player 2 plays her third action,
player one receives a payoff of 799,169 and player 2 receives a payoff of 148,480.

In this file format, comments precede the payoff values. Lines containing comments begin
with #.

• GambitOutput:

Outputs the game in Gambit’s .nfg format. More information on this .nfg format can be
found on the Gambit website at http://econweb.tamu.edu/gambit/.

In this format, comments follow the initial line, but precede payoff values.

• GTOutput:

Outputs the game in a format which can be read in by GameTracer. For more on the GT input
format, see the GameTracer website at http://dags.stanford.edu/Games/gametracer.html.

There are no comments in this format.

• TwoPlayerOutput:

This format is designed to resemble the normal matrix form representation of a two player
game and thus be human-readable. Payoffs for each outcome appear in pairs in which the
first number is the payoff to player 1 and the second number is the payoff to player 2. Each
row represents an action choice for player 1, and each column an action choice for player 2.

26

In this file format, comments precede the payoff values. Lines containing comments begin
with two forward slashes.

This formatting option can only be applied to two-player games.

• SpecialOutput:

The SpecialOutput class is used for game-specific output formats. Currenly the only game-
specific output format available is for graphical games.

7 Additional References

The most up-to-date source code, developer’s guide, database of games and references, relevant
papers, and contact information can be found on the GAMUT website at http://gamut.stanford.edu.
Questions or comments on this guide may be sent to jwortman@cs.stanford.edu.

27

